Pracovné zaradenie:
Pedagogický pracovník
Oddelenie:
Oddelenie matematiky (OM)
Miestnosť:
NB 618
eMail:
Telefón:
+421 259 325 341
ORCID iD:
0000-0002-1147-0767
Google Scholar:
Q8EOi5MAAAAJ&hl=cs
Vedecká činnosť:
Algebraic Graph Theory
Dostupnosť:

Vybrané publikácie

Článok v časopise

  1. Š. Gyurki – R. Jajcay – P. Jánoš – J. Širáň – Y. Wang: Using bi-coset graphs to construct small regular and biregular graphs. Discrete Mathematics, č. 5, zv. 347, 2024.
  2. Š. Gyurki – P. Jánoš: On the automorphisms of a family of small q-regular graphs of girth 8. The Art of Discrete and Applied Mathematics, č. 1, zv. 6, 2023.
  3. P. Jánoš – D. Mesežnikov: An upper bound on the order of graphs of diameter two arising as abelian lifts of multigraphs. The Australasian Journal of Combinatorics, č. 3, zv. 81, str. 357–366, 2021.

Príspevok na konferencii

  1. Š. Gyurki – P. Jánoš – J. Šiagiová – J. Širáň: A connection between G-graphs and lifting construction. Editor(i): P. Gregor, J. Kratochvíl, M. Loebl, M. Pergel, V 8th Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, str. 38–38, 2022.
  2. Š. Gyurki – P. Jánoš – J. Šiagiová – J. Širáň: On a relation between G-graphs and lifting construction. Editor(i): Š. Gyürki, S. Pavlíková, J. Širáň, V 56th Czech and Slovak Conference on Graph Theory, Slovak University of Technology, Bratislava Slovak Mathematical Society, Radlinskeho 11, Bratislava, str. 29–29, 2021.
  3. P. Jánoš: On lifting constructions of small regular graphs of girth six arising from a dipole. V Advances in Architectural, Civil and Environmental Engineering, Bratislava : Spektrum STU, str. 35–38, 2020.
  4. P. Jánoš: On small regular graphs of a given degree and girth 6 and 8 arising from lifts of dipoles. V 55 th Czech-Slovak Conference on Graph Theory 2020, Faculty of informatics, Masaryk University, Botanicka 88A, Brno, str. 17–17, 2020.
  5. P. Jánoš: On lifting constructions of small regular graphs of a given degree and girth 6 and 8. V ISCAMI 2020, Ostrava : University of Ostrava, str. 40–40, 2020.
  6. P. Jánoš: A note on the McKay-Miller-Širáň graphs as Abelian lifts of multigraphs of diameter two. V Advances in Architectural, Civil and Environmental Engineering, Bratislava : Spektrum STU, str. 25–29, 2019.
  7. P. Jánoš: The McKay-Miller-Širáň bound on large graphs of given degree and diameter two. V ISCAMI 2019, Prague : Czech Technical University in Prague, str. 42–42, 2019.
  8. P. Jánoš: An upper bound for large graphs of given degree and diameter two arising from Abelian lifts of complete bipartite multigraphs. Editor(i): Július Czap, V 54th Czech-Slovak Conference Graphs 2019, Košice : Technical University of Košice, str. 11–12, 2019.
  9. P. Jánoš: Lifting complete bipartite multigraphs to graphs of diameter two. V Advances in Architectural, Civil and Environmental Engineering, Bratislava : Spektrum STU, str. 20–26, 2018.
  10. P. Jánoš: An upper bound on the order of Abelian lifts of complete and complete bipartite multigraphs of diameter two. V ISCAMI 2018, Ostrava : University of Ostrava, str. 37–37, 2018.
Facebook / Youtube

Facebook / Youtube

RSS