- Project number:
- APVV-21-0019
- Title of the project:
- Data Based Process Control
- Grant scheme:
- APVV-VV2021
- Project type:
- APVV Research Projects
- Project duration (start):
- 01.07.2022
- Project duration (end):
- 30.06.2025
- Principal investigator:
- Miroslav Fikar
- Deputy investigator:
- Radoslav Paulen
- Investigators:
- Diana Dzurková, Rastislav Fáber, Martin Kalúz, Karol Kiš, Martin Klaučo, Martin Mojto, Carlos E. Valero
The main aim of the proposed research project is to investigate and design new data-driven advanced methods of automatic control and monitoring in process industries to improve efficiency of process plants, their monitoring, and process control and to improve profitability, stability, and competitiveness. We will focus on processes with heat and mass transfer where efficiency can be improved significantly. These processes are inherently complex, exhibit nonlinear and hybrid behaviour that has consequences in control quality and performance. Optimal control and monitoring will cover interplay of techniques of applied statistics, treatment of big data, data-based state estimation, inferential sensors, dynamic optimisation, predictive control. Also, important will be software implementation of proposed solutions, available to a larger community in open-source code as well as verification of the proposed methods in laboratory conditions and with data from industrial partners.
Publications
2023
- R. Dyrska – J. Müller – M. Fikar – M. Mönnigmann: Simple Controller Tuning for Unmanned Aerial Vehicles using Governors. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 2023 24th International Conference on Process Control, IEEE, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia, pp. 108–113, 2023. Zenodo
- R. Fáber – K. Ľubušký – M. Mojto – R. Paulen: Enhancing Industrial Data Analysis through Machine Learning-based Classification of Petrochemical Datasets. In 49th International Conference of the Slovak Society of Chemical Engineering SSCHE 2023, Slovak Society of Chemical Engineering, Bratislava, SK, pp. 160–160, 2023. Zenodo
- R. Fáber – K. Ľubušký – R. Paulen: Machine Learning-based Classification of Online Industrial Datasets. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 2023 24th International Conference on Process Control, IEEE, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia, 2023. Zenodo
- M. Fikar – K. Kiš – M. Klaučo – M. Mönnigmann: Simple Tuning of Arbitrary Controllers using Governors. In IFAC World Congress 2023, Yokohama, Japan, pp. 9109–9114, 2023. Zenodo
- M. Kalúz – R. Kohút – D. Dzurková: MPC-Mimicking Neural Network Based on Homomorphic Encryption. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 2023 24th International Conference on Process Control, IEEE, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia, pp. 126–131, 2023. Zenodo
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Comparing Linear and Nonlinear Soft Sensor Approaches for Industrial Distillation Columns (in Anglo-Saxon). In 49th International Conference of the Slovak Society of Chemical Engineering SSCHE 2023, Slovak Society of Chemical Engineering, Bratislava, SK, pp. 159–159, 2023. Zenodo
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Input Structure Selection for Soft-Sensor Design: Does It Pay Off?. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 2023 24th International Conference on Process Control, IEEE, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia, pp. 162–167, 2023. Zenodo
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Data-Driven Indication of Flooding in an Industrial Debutanizer Column. Editor(s): Antonis Kokossis, Michael C. Georgiadis, Efstratios N. Pistikopoulos, In 33rd European Symposium on Computer Aided Process Engineering, Elsevier, no. 1, vol. 33, pp. 1001–1006, 2023. Zenodo
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Design of Multi-Model Linear Inferential Sensors with SVM-based Switching Logic. In IFAC World Congress 2023, Yokohama, Japan, pp. 2545–2550, 2023. Zenodo
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Data-Based Design of Multi-Model Inferential Sensors. Computers & Chemical Engineering, vol. 178, 2023. arXiv Zenodo
- J. Oravec – P. Bakaráč – E. Pavlovičová – M. Fikar: Smart Eco Greenhouse VESNA. In IFAC World Congress 2023, Yokohama, Japan, pp. 10295–10300, 2023. Zenodo
- M. Ružička – I. Helgeland – R. Paulen: Modelling of a Forward Osmosis Process (in Slovak). In Membránové procesy pro udržitelný rozvoj - MEMPUR 2023, pp. 35–36, 2023.
- P. Valábek – M. Klaučo: Generation of MPC-like Explicit Control Laws with Reinforcement Machine Learning. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 24th International Conference on Process Control - Summaries Volume, Slovak Chemical Library, Slovak University of Technology in Bratislava, Radlinského 9, SK812-37, Bratislava, Slovakia, 2023.
- J. Vargan – J. Puk – K. Ľubušký – M. Fikar: Steady-State Analysis of Industrial MPC Controllers. Editor(s): R. Paulen and M. Fikar, In Proceedings of the 24th International Conference on Process Control - Summaries Volume, Slovak Chemical Library, Slovak University of Technology in Bratislava, Radlinského 9, SK812-37, Bratislava, Slovakia, 2023. Zenodo
2022
- R. Fáber – R. Valo – M. Roman – R. Paulen: Towards Temperature Monitoring in Long-Term Grain Storage. In 2022 Cybernetics & Informatics (K&I), 2022. Zenodo
- M. Fikar – M. Klaučo – K. Kiš: A General Controller Tuning using Governors. 2022.
- M. Fikar – M. Klaučo – R. Paulen: Theory of Automatic Control I. Practice Examples, FCHPT STU v Bratislave, 2022.
- K. Kiš – P. Bakaráč – M. Klaučo: Nearly Optimal Tunable MPC Strategies on Embedded Platforms. In 18th IFAC Workshop on Control Applications of Optimization, IFAC-PapersOnline, pp. 326–331, 2022.
- J. Mikleš – Ľ. Čirka – J. Oravec – M. Fikar: Design of H2 and Hinf control using Lyapunov functions (in Slovak), FCHPT STU v Bratislave, 2022.
- M. Mojto – K. Ľubušký – M. Fikar – R. Paulen: Multi-Model Soft-Sensor Design for a Depropanizer Distillation Column. In Advanced Process Modelling Forum 18-19 October 2022, 2022. Zenodo
Investigators
Responsibility for content: prof. Ing. Miroslav Fikar, DrSc.
Last update:
30.10.2021 7:58