# Institute of Information Engineering, Automation, and Mathematics

Course unit code:
N428F2_4B
Course unit title:
Physics I
Mode of completion and Number of ECTS credits:
Exm (5 credits)
Course supervisor:
Learning outcomes of the course unit:
The student will acquire knowledge of mechanics of a point mass, point mass system, rigid body, oscillations and fluids. She/he is able to apply the physical laws to solving of physical problems.
Prerequisites for registration:
none
Course contents:
1. Kinematics of a point mass. (allowance 2/2)

 a. Subject of physics, role of physics in the study of chemistry, relations to other subjects. Physical quantities, dimensions and units. International System of Units SI. Scalar and vector quantities. b. Kinematics of a point mass in scalar terms. Classification of motions from the point of view of the trajectory. Linear motion: position, velocity and acceleration. c. Clasifcation of motions from the point of view of the acceleration. Time dependence of the velocity and position for various types of the linear motion, initial conditions.

2. Kinematics of a point mass (continued). (allowance 2/2)

 a. Kinematics of a point mass in vector terms. Vector function of a scalar variable. Derivative of a vector function. General description of the position, position vector. Average and instantaneous velocity, average and instantaneous acceleration. b. Curved motion, decomposition of the acceleration to the tangential and normal component. c. Circular motion. Scalar and vector description of the circular motion, accelerations at the circular motion.

3. Dynamics of a point mass. (allowance 2/2)

 a. Newton's laws of motion, impulse. b. Equation of motion, methods of solving it. Examples - horizontal and skew throw. c. Limitations of the validity of the Newton's laws.

4. Dynamics of a point mass (continued). (allowance 2/2)

 a. Inertial forces in noninertial reference frames (frame in linear motion, rotating frame, centrifugal inertial force, Coriolis force. b. Work, power, efficiency. c. Conservative and nonconservative forces. Kinetic and potential energy and their relation to work.

5. Dynamics of a point mass (continued). (allowance 2/2)

 a. Potential energy for gravity and deformation forces. b. Law of conservation of mechanical energy of a point mass in a field of conservative forces.

6. Dynamics of a mass point system. (allowance 2/2)

 a. Degrees of freedom, center of mass, linear momentum theorem. b. Newton's second law for the motion of the center of mass. c. Angular momentum, angular momentum theorem.

7. Dynamics of a mass point system (continued). (allowance 2/2)

 a. Laws of conservation of the linear momentum, angular momentum, mechanical energy for a mass point system. b. First law of thermodynamics. c. Elastic and inelastic collisions of objects.

8. Dynamics of a rigid body. (allowance 2/2)

 a. Rigid body definition. Types of motion of a rigid body. b. Kinetic energy for rotational and combined motion of a rigid body. c. Rotational inertia about a rotational axis, parallel axis theorem (Steiner rule).

9. Dynamics of a rigid body (continued). (allowance 2/2)

 a. Work and power for rotational motion of a rigid body. b. Relation between the angular velocity and angular momentum. c. Equation of motion of a rigid body with a fixed axis, as example equation of motion of a physical pendulum.

10. Oscillations. (allowance 2/2)

 a. Harmonic oscillations, mechanical linear harmonic oscillator, energy of a mechanical linear harmonic oscillator. Solving of the equation of motion of a simple and physical pendulum. b. Oscillations of a diatomic molecule, reduced mass. Damped harmonic motion. c. Forced oscillations, resonance, resonance frequency and amplitude.

11. Oscillations (continued). (allowance 2/2)

 a. Composition of two parallel oscillations of the same and different frequencies. b. Composition of vertical oscillations.

12. Fluid mechanics. (allowance 2/2)

 a. Ideal fluid. b. Fluid dynamics. Description of fluid flow. Definition of a streamline, elementary volume flux and elementarry mass flux. Equation of continuity. Arial and volume forces. c. Mechanical energy of a flowing liquid and the work of the pressure forces - Bernoulli's equation. d. Examples of applications of the Bernoulli's equation - Torricelli's law, measurement of flux. e. Real liquids, definition of the viscosity. Laminar and turbulent flow.

13. Fluid mechanics (continued). (allowance 2/2)

 a. Fluid statics. Fundamental equation of fluid statics in a weight field. Hydrostatic pressure. b. Pascal's principle and Archimedes' principle.

Basic:
• LAURINC, V. Fyzika I. Bratislava : Alfa, 1983. 185 s.
• LAURINC, V. Fyzika I: Zbierka príkladov a úloh. Bratislava : STU v Bratislave, 2000. 156 s. ISBN 80-227-1376-7.
• LAURINC, V. Fyzika I. Zbierka príkladov a úloh. Bratislava: STU, 2000. 156 s. ISBN 80-227-1376-7.
• LAURINC, V. – BUŠOVSKÝ, L. – FEDORKO, P. – HOLÁ, O. – LUKÁČ, P. Fyzika I: Zbierka príkladov a úloh. Bratislava: STU, 2000. 156 s. ISBN 80-227-1376-7.
• LAURINC, V. – VALACH, F. Fyzika I. Bratislava: STU, 1995. 195 s. ISBN 80-227-0734-1..
• HALLIDAY, D. – RESNICK, R. – WALKER, J. CD - Physics. Version 2.0. Fundamentals od Physics. (neuvedené) : John Wiley & Sons, 1997. ISBN 0-471-164563-.
• HALLIDAY, D. – RESNICK, R. – WALKER, J. Fyzika. Brno: VUTIUM, 2000.
• HALLIDAY, D. – RESNICK, R. – WALKER, J. Fyzika. Část 1. Mechanika: Vysokoškolská učebnice obecné fyziky. Brno : VUTIUM, 2000. 328 s. ISBN 80-214-1868-0.
• HALLIDAY, D. – RESNICK, R. – WALKER, J. Fyzika: Část 2: Mechanika - Termodynamika: Vysokoškolská učebnice obecné fyziky. Brno : VUTIUM, 2000. 246 s. ISBN 80-214-1868-0.
• LUKEŠ, V. – KLEIN, E. Fyzika I – Úlohy a testy. Bratislava: Nakladateľstvo STU , 2010. 167 s. ISBN 978-80-227-3255-0.
• LUKEŠ, V. – ANNUS, J. – FEDORKO, P. – HOLÁ, O. – ILČIN, M. – KLEIN, E. Fyzika (Praktikum). Nakladateľstvo STU, 2011. 263 s. ISBN 978-80-227-3570-4.
• HALLIDAY, D. – RESNICK, R. – WALKER, J. Fundamentals of physics. New York : John Wiley & Sons, 2005. 1247 s. ISBN 0-471-23231-9.
Planned learning activities and teaching methods:
The subject consists of lectures and seminars. The lectures are oriented at explaining the theoretical bases and the seminars at solving problems.
Assesment methods and criteria:
The written examination consists of basic theoretical questions, more complex theoretical questions and solving of problems. The minimum required for each of the test parts is 56%. A prerequisite to the examination is active presence at the all lectures and all seminars and successful passing of a given number of electronic tests.
Language of instruction:
Slovak, English