On Trade-offs Governing Real-Time Implementation of Model Predictive Control

Mazen Alamir

CNRS, University of Grenoble

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 1 / 37

Overview of the talk

Cryogenic refrigerators

Ideal MPC

Real-Time MPC

Trade-offs

MPC certification

 \leftarrow

Source: https://www.euro-fusion.org

Why?

Provide refrigeration capacity to cool

down the supra-conducting coils used to accelerate the plasma in Nuclear Fusion Reactors (ITER, JT60)

 \leftarrow \Box \rightarrow

 $=$ \rightarrow

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T) =(Entropy, Temperature) plan.

$$
\int dQ = \underbrace{\int_{C_1} T dS}_{>0} + \underbrace{\int_{C_2} T dS}_{<<0}
$$

Source: F. Bonne PhD (2014).

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T) =(Entropy, Temperature) plan.

$$
\int dQ = \underbrace{\int_{C_1} T dS}_{>0} + \underbrace{\int_{C_2} T dS}_{<<0}
$$

 \leftarrow

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T) =(Entropy, Temperature) plan.

$$
\int dQ = \underbrace{\int_{C_1} T dS}_{>0} + \underbrace{\int_{C_2} T dS}_{<<0}
$$

Source: F. Bonne PhD (2014).

Source: F. Bonne PhD (2014).

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T) =(Entropy, Temperature) plan.

$$
\int dQ = \underbrace{\int_{C_1} T dS}_{>0} + \underbrace{\int_{C_2} T dS}_{<<0}
$$

 \Box

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 4 / 37

Source: F. Bonne PhD (2014).

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T) =(Entropy, Temperature) plan.

$$
\int dQ = \underbrace{\int_{C_1} T dS}_{>0} + \underbrace{\int_{C_2} T dS}_{<<0}
$$

Why MPC?

 \leftarrow \Box \rightarrow

 $2Q$

∍

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 5 / 37

 \blacktriangleright State constraints

 \leftarrow

 QQ

Why MPC?

 \blacktriangleright State constraints

 \leftarrow

 \triangleright Control Saturation

 QQ

Why MPC?

- \triangleright State constraints
- \triangleright Control Saturation
- \triangleright Coupled dynamics

 Ω

 \blacktriangleright Inverse response

 \Box

 $2Q$

Ideal Framework: Recalls & Basic Notations

 \leftarrow \Box \rightarrow

Ideal MPC: The key assumptions

Keep in mind

In the ideal framework, when the horizon moves, the hot start \hat{p}_k^+ $\frac{1}{k}$ computed from the previous optimal solution \hat{p}_k satisfies:

 $J(\hat{p}_k^+)$ J_k^+ , \mathbf{x}_{k+1}) $\leq J(\hat{p}_k, \mathbf{x}_k)$

Mayne et al. Automatica (2000).

- \blacktriangleright [Formulation involving Final](#page-0-0) [constraints](#page-0-0)
- \triangleright \hat{p}_k sufficiently good

Ideal MPC: The key assumptions

Keep in mind

In a realistic framework, when the horizon moves, the hot start p_k^+ $\frac{1}{k}$ computed from the previous solution p_k satisfies:

$$
J(p_k^+, \mathbf{x}_{k+1}) = J(p_k, \mathbf{x}_k) + D(\tau_u)
$$

 $D(0)=0$ $D(\tau_u)$ is not necessarily ≤ 0 .

- \blacktriangleright [Formulation involving Final](#page-0-0) [constraints](#page-0-0)
- \triangleright \hat{p}_k sufficiently good

Ideal MPC: The key assumptions

Keep in mind

In a realistic framework, when the horizon moves, the hot start p_k^+ $\frac{1}{k}$ computed from the previous solution p_k satisfies:

$$
J(p_k^+, \mathbf{x}_{k+1}) = J(p_k, \mathbf{x}_k) + D(\tau_u)
$$

 $D(0)=0$ $D(\tau_u)$ is not necessarily ≤ 0 .

[Even with](#page-0-0) perfect undisturbed model

つひひ

 $2Q$

Preparation & Feedback Steps

 \leftarrow

Preparation & Feedback Steps

1. Predict $\tilde{\mathbf{x}}_k$

 \leftarrow

2. During
$$
[t_{k-1}, t_k]
$$

Compute $\hat{p}(\tilde{\mathbf{x}}_k)$ [and $\frac{\partial \hat{p}_k}{\partial \mathbf{x}}]$]

 $2Q$

Preparation & Feedback Steps

- 1. Predict $\tilde{\mathbf{x}}_k$
- 2. During $[t_{k-1}, t_k]$ Compute $\hat{p}(\tilde{\mathbf{x}}_k)$ [and $\frac{\partial \hat{p}_k}{\partial \mathbf{x}}$]
- 3. Once x_k is available:

 \Box

$$
\hat{p}_k \leftarrow \hat{p}(\tilde{\mathbf{x}}_k) + \left[\frac{\partial \hat{p}_k}{\partial \mathbf{x}}\right] \cdot \delta_{\mathbf{x}}
$$

 Ω

Preparation & Feedback Steps

Definition of Fast NMPC Problems

 τ_{μ} is the time between two control updating

 τ_{μ} is the time during which there is no feedback

イロメ イ部メ イミメ イモメー

 \equiv

 QQ

$$
\Rightarrow \tau_u \leq \tau_u^{\text{max}}
$$

Definition of Fast NMPC Problems

 τ_{μ} is the time between two control updating

 τ_{μ} is the time during which there is no feedback

$$
\Rightarrow \tau_u \leq \tau_u^{\text{max}}
$$

Fast NMPC problems are those for which Fast NMPC Problems

 $\tau_{solve} (NLP(\mathbf{\tilde{x}}_k)) \geq \tau_{u}^{max}$

 $2Q$

э

The Iterative Process

 \leftarrow \Box \rightarrow

The Iterative Process

$$
\left(p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \tilde{\mathbf{x}}_k)\right)
$$

 $2Q$

∍

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37

 \leftarrow \Box \rightarrow

The Iterative Process

$$
\left(p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \mathbf{\tilde{x}}_k)\right)
$$

 \leftarrow \Box \rightarrow

 $2Q$

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37

The Iterative Process

$$
\left(p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \tilde{\mathbf{x}}_k)\right)
$$

 \leftarrow \Box \rightarrow

 $2Q$

∍

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37
∍

The Iterative Process

 Ω

∍

The Iterative Process

$$
\rho_k := \mathcal{S}^{(q)}(p_{k-1}^+, \mathbf{x}_{k-1})
$$

 \leftarrow

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37

 Ω

Sufficient Conditions of Success

 QQ

Sufficient Conditions of Success

 Ω

Sufficient Conditions of Success

 QQ

 QQ

Closed-Loop Evolution of the Cost Function

Closed-Loop Evolution of the Cost Function

 QQ

Closed-Loop Evolution of the Cost Function

 QQ

Closed-Loop Evolution of the Cost Function

Closed-Loop Evolution of the Cost Function

Closed-Loop Evolution of the Cost Function

 \Box

Closed-Loop Evolution of the Cost Function

 \Box

 Ω

イロト イ押ト イヨト イヨト

 $2Q$

B

 $E^{\mathcal{S}}(\tau_u) > D(\tau_u)$

← ロ ▶ → イ 同

 $\,$

イラメ イラメ

 $2Q$

目

 QQ

4 母 $\,$ 4.27×10^{-4} \exists \rightarrow 目 $2Q$

 Ω

 $\exists x \in \mathbb{R}$ 重 $2Q$

目

 Ξ > < 重

 \prec

 $2Q$

э

 $2Q$

目

ミドィミド

 \prec

 $2Q$

目

ミトマミト

 $2Q$

目

ヨト イヨト

 $2Q$

э

÷.

Þ. $\vert \cdot \vert$

Key properties of a solver

Keep in Mind

It is sometimes better to choose a less efficient^a solver with shorter preparation step duration τ_1 .

 QQ

^aper iteration

Key properties of a solver

Keep in Mind

It is sometimes better to choose a less efficient^a solver with shorter **preparation step** duration τ_1 .

 Ω

^aper iteration

Gradient-based studies

Bemporad and Patrinos (2012), Jones et al. (2012), MA (2013).

Heuristics for second order methods

Bock et al. SIAM (2007)

Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

 \leftarrow \Box \rightarrow

$$
x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

$$
y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

 $2Q$

Þ

Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

 \leftarrow \Box \rightarrow

$$
x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

$$
y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

 $2Q$

Þ

Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

$$
x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

$$
y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

Constraints are bounds on the state and control components

(affine in u)

 \leftarrow

 QQ

Source: Fr. Bonne PhD defense

After linearization:

$$
x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

$$
y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}
$$

Constraints are bounds on the state and control components

(affine in u)

⇓

 Ω

QP problems to be solved at each updating period

Source: Fr. Bonne PhD defense

- \triangleright Output Turbine temperature must be higher than some threshold to avoid solid droplets
- \blacktriangleright The helium bath level must remains between a lower and an upper bound to avoid extreme situation

$$
\rightarrow y_{min} \leq y_k \leq y_{max}
$$

 Ω

Source: Fr. Bonne PhD defense

- \triangleright Valves opening is constrained between 0 and 100%
- \triangleright Speed of valve opening is also limited

$$
\binom{u_{min}}{\delta_{min}} \leq \binom{u_k}{\delta u_k} \leq \binom{u_{max}}{\delta_{max}}
$$

 \leftarrow

 Ω

Source: Fr. Bonne PhD defense

Degrees of freedom:

$$
p=\mathbf{u}_k:=(u_k \quad u_{k+1} \quad \ldots \quad u_{k+N_p-1})
$$

Cost function:

$$
J(p, \mathbf{x}_{k}) := \sum_{i=1}^{N_p} \|\mathbf{x}_{k+i}(p) - \mathbf{x}_{k+i}^{ref}\|_{Q}^{2} + \sum_{i=0}^{N_p-1} \|u_{k+i}(p) - u_{k+i}^{ref}\|_{Q}^{2}
$$

 \leftarrow \Box \rightarrow

 QQQ

Þ

Back to Cryogenics: The QP-OASES Solver

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 19 / 37

÷

 Ω

 $2Q$

Þ

Back to Cryogenics: Results

 $2Q$

Þ

Back to Cryogenics: Results

 $2Q$

Þ

Back to Cryogenics: Results

Back to Cryogenics: Results

Is it real-time compatible ?

 $n_{\rm u} = 3 + 2 \times 2 = 7$ $N_p = 100 \rightarrow n_p = 700$!!

 \leftarrow \Box

 Ω

Back to Cryogenics: Reducing the problem's complexity

The cost of a single iteration depends on:

- \blacktriangleright The number of decision variables n_p (dimension of p)
- \triangleright The number of constraints n_c (number of line in A)

Using linear interpolation:

 n_p : 700 \rightarrow 49

Checking constraints only at some chosen instants

 $n_c : 1000 \to 98$

 Ω

Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the reduced dimensional parametrization

Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the original parametrization

Back to Cryogenics: Real-Time Considerations

 \Box

 Ω

Back to Cryogenics: Results with interrupted QPOASES solver

QPOASES limited to 10 iterations QPOASES without interruption

Source: Fr. Bonne PhD defense

Solver based on integrating stiff ODEs

 \Box

 Ω

Comparison between RT-performances of QPOASES and ODE-solver

QPOASES unlimited QPOASES limited to 10 iterations ODE-solver limited to 20 iterations

Source: Fr. Bonne PhD defense

 QQQ

Why ?

QPOASES / ODE-solver

Source: Fr. Bonne PhD defense

Why ?

available power available power

 \leftarrow

 QQQ

QPOASES / ODE-solver

Source: Fr. Bonne PhD defense

 QQQ

Why ?

available power available power

4 **D** F

Source: Fr. Bonne PhD defense

 QQQ

QPOASES / ODE-solver

Source: Fr. Bonne PhD defense

 QQQ

Source: Fr. Bonne PhD defense

つひひ

Regarding the Solver Choice

Keep in Mind

1) In RT-MPC, what does matter is the **Arithmetical** Complexity and not the **Analytical** Complexity¹.

2) In RT-MPC, what does matter is the Transient Behavior and not the **Asymptotic** Behavior.

Arithmetical Number of elementary operations Analytical Number of iterations

¹ Y.Nesterov. Introductory lectures in convex optimization 2004

 Ω

Updating Scheme For a Given Solver

Assume that a solver S has been chosen ...

Is there any remaining choice ?

 QQ

What is the optimal τ_u for a given solver?

 QQ

What is the optimal τ_u for a given solver?

What is the optimal τ_u for a given solver?

イ何 ト イヨ ト イヨト

 $2Q$

э

$$
\begin{bmatrix}\n p_{k+1} = S^{(q(\tau_u))}(p_k^+, \mathbf{x}_k)\n\end{bmatrix}
$$

B

 $2Q$

$$
p_{k+1} = \mathcal{S}^{(q(\tau_u))}(p_k^+, \mathbf{x}_k)
$$

$$
\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathcal{U}(0, p_k))
$$

イ母 トイラトイ

E.

э

 $2Q$

$$
\begin{pmatrix}\n p_{k+1} \\
\mathbf{x}_{k+1}\n\end{pmatrix} = F\left(\begin{pmatrix}\n p_k \\
\mathbf{x}_k\n\end{pmatrix}, \tau_u\right)
$$

イ母 トイラトイ

E.

э

 $2Q$

$$
\begin{bmatrix}\n p_{k+1} \\
\mathbf{x}_{k+1}\n\end{bmatrix} = F\left(\begin{bmatrix}\n p_k \\
\mathbf{x}_k\n\end{bmatrix}, \tau_u\right) \\
y = J(p_k, \mathbf{x}_k)
$$

イ母 トイラトイ

E.

э

 $2Q$

$$
z^{+} = F(z, \tau_u)
$$

$$
y = J(z)
$$
\leftarrow \Box \rightarrow

 $\left\{ \left\vert \Theta\right\vert \left\vert \varphi\right\vert \left\langle \left\vert \varphi\right\vert \left\vert$

 $2Q$

э

Updating τ_u is a control problem ...!

$$
\begin{bmatrix}\n z^+ &= F(z, w, \tau_u) \\
y &= J(z)\n\end{bmatrix}
$$

 \leftarrow \Box \rightarrow

 QQQ

重 (Brita

э

Updating τ_u is a control problem ...!

 \leftarrow

 QQQ

Updating τ_u is a control problem ...!

 Ω

Updating τ_{μ} is a control problem ...!

 299

 299

Þ

 QQQ

Ξ

 QQ

∍

Certification bound

The integer $\mathsf{N}(\mathsf{p}^{(0)},\epsilon)$ s.t

$$
|J(p^{(i)}, \mathbf{x}_k) - J(p^{opt}, \mathbf{x}_k)| \leq \epsilon
$$

for all $i \geq N(p^{(0)}, \epsilon)$.

 Ω

Bemporad and Patrinos (2012) Richter et al. Automatica (2012) Jones et al. (2012) MA (2015)

 Ω

Bemporad and Patrinos (2012) Richter et al. Automatica (2012) Jones et al. (2012) MA (2015)

 Ω

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 34 / 37

The integer $\mathsf{N}(\mathsf{p}^{(0)},\epsilon)$ s.t

$$
|J(p^{(i)}, \mathbf{x}_k) - J(p^{opt}, \mathbf{x}_k)| \leq \epsilon
$$

for all $i \geq N(p^{(0)}, \epsilon)$.

 $Reminder \rightarrow Arithmetical/Analytical Complexity$ $Reminder \rightarrow Arithmetical/Analytical Complexity$

 Ω

When available

N^o of iterations (q) ⇔ guaranteed precision $(ε)$

Easier to include in stability analysis

 Ω

 \leftarrow \Box \rightarrow

 $A \equiv 1$ and $B \equiv 1$

 $2Q$

э

MA. From Certification of Algorithms To Certified MPC. NMPC2015, Seville.

 \leftarrow \Box \rightarrow

 QQ

MA. From Certification of Algorithms To Certified MPC. NMPC2015, Seville.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 \leftarrow \Box \rightarrow

 QQ

Þ

Conclusion

Certified Real-time MPC needs Co-Design approach involving:

- ▶ Carefully chosen Certified Solver
- \triangleright Carefully designed MPC Formulation
- \triangleright Carefully chosen embedded computation facility
- \triangleright Carefully characterized uncertainties and set-point dynamics
- \triangleright Carefully chosen initialization rule

Remember! MPC was first successful, theory only followed . . .

Acknowledgment

PhD students

R. Amari, F. Bonne, F. Clavel, C. Dedouits, A. Hably, M. Y. Lamoudi, H. Mesnage, N. Marchand, A. Murilo, P. Pflaum.

Industrial Partners

P. Tona (IFPEN) N. Perrissin-Fabert (ALSTOM) P. Bonnay (CEA-INAC-SBT) P. Béguery, C. Le Pape (SCHNEIDER ELECTRIC) P. D. Gualino (SCHNEIDER ELECTRIC)

GIPSA-lab staff

M. R. Alfara, P. Bellemain, G. Buche, Ch. Bulfone, O. Chabert, M. Di-Maria, J.

Dumon, A. Fradin, E. Genin, C. Mendes, V. Messina, A. Mokhtari, S. Noguera, J. M. Thiriet,

Academic Partners

G. Bornard, L. Del Re, P. Ortner, R. Furhapter N. Sheibat-Othman, S. Othman J. P. Corriou, F. Boyer.

イタト イミト イミト

 OQ

Institutions

 \leftarrow \Box \rightarrow

CNRS ANR Grenoble-Inp Université Jospeh Fourier