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Outline Cryogenics MPC Trade-offs About certification

The illustrative Process: Cryogenic Refrigerators

Source: https://www.euro-fusion.org

Why?

Provide refrigeration capacity to cool
down the supra-conducting coils
used to accelerate the plasma in
Nuclear Fusion Reactors (ITER, JT60)
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The illustrative Process: Cryogenic Refrigerators

S

T

C1

C2

∆Q < 0

How?

Force a thermodynamic fluid to
make a counter-clock cycle in the
(S ,T )=(Entropy,Temperature) plan.

∫
dQ =

∫
C1

TdS︸ ︷︷ ︸
>0

+

∫
C2

TdS︸ ︷︷ ︸
<<0
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The illustrative Process: Cryogenic Refrigerators

y ≤ y ≤ ȳ

Why MPC?

I State constraints

I Control Saturation

I Coupled dynamics

I Inverse response
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Ideal Framework: Recalls & Basic Notations

ttk

present

tk + T

tk

present

tk + T

xk

prediction horizon

prediction horizon

J(p, xk)

J(p̂k , xk)

J(p̂+
k , xk+1)

U(·, p)

U(·, p̂k)

p̂+
k

min
p

J(p, xk) s.t. C (p, xk) ≤ 0

p̂k = p̂(xk)

Apply U(·, p̂(xk)) during τu

min
p

J(p, xk+1) s.t. C (p, xk+1) ≤ 0

p̂k+1 = p̂(xk+1)

Initialize at p̂+
k (hot start)

J(p̂k+1, xk+1) ≤ J(p̂+
k , xk+1)

J(p̂+
k , xk+1≤J(p̂k , xk) + −

J(p̂k+1, xk+1) ≤ J(p̂+
k , xk+1)

J(p̂+
k , xk+1)=J(p̂k , xk)− +

≤ 0 ?

In the ideal framework, when
the horizon moves, the hot
start p̂+

k computed from the pre-
vious optimal solution p̂k satisfies:

J(p̂+
k , xk+1) ≤ J(p̂k , xk)

Mayne et al. Automatica (2000)

Keep in mind

tk+1

τu

τu

xk+1
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Ideal MPC: The key assumptions

In the ideal framework, when
the horizon moves, the hot
start p̂+

k computed from the pre-
vious optimal solution p̂k satisfies:

J(p̂+
k , xk+1) ≤ J(p̂k , xk)

Mayne et al. Automatica (2000).

Keep in mind

Even with perfect
undisturbed model

I Formulation involving Final
constraints

I p̂k sufficiently good

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 7 / 37
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In a realistic framework, when
the horizon moves, the hot start
p+
k computed from the previous

solution pk satisfies:

J(p+
k , xk+1) = J(pk , xk) + D(τu)

D(0) = 0
D(τu) is not necessarily ≤ 0.

Keep in mind
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Preparation & Feedback Steps

ttk tk + Ttk−1

xk

xk−1

x̃k (predicted)

prediction horizon

τu

δx

1. Predict x̃k

2. During [tk−1, tk ]

Compute p̂(x̃k) [and
∂p̂k
∂x

]

(preparation step)

3. Once xk is available:

p̂k ← p̂(x̃k) +
[∂p̂k
∂x

]
· δx

(feedback step)

Diehl et al. SIAM J. Ctrl and Opt. (2005)

Zavala and Biegler. Auomatica (2009)
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control updating

τu is the time during which there
is no feedback

⇒ τu ≤ τmax
u
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those for which

τsolve
(
NLP(x̃k)

)
≥ τmax

u

Fast NMPC Problems
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The Iterative Process
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J(pk−1, xk−1)

p+
k−1 hot startJ(p+

k−1, xk)

prediction horizon
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S(p
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k , xk) p
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S(p
(1)
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(2)
k

pk

p(i+1) ← S(p(i), x̃k)

q = int
(τu
τ1

)

pk := S(q)(p+
k−1, xk−1)

dynamic equation for p
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Closed-Loop Evolution of the Cost Function
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Reminder

ES(τu) > D(τu)

D(τu) ES(τu)
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Reminder

ES(τu) > D(τu)

τu

p
p+

I D(τu) := J(p+, x+)− J(p, x)

I D(0) = 0, D(τu) can be ≥ 0

I τu ∈ [0, τmax
u ]

I Independent of the solver S

D(τu) ES(τu)
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Reminder

ES(τu) > D(τu)

D(τu)

I ES(τu) := J(p(0), x)−J(p(qS), x)

I qS = int(τu/τ
S
1 )

I τS1 time for a single iteration

I τu ∈ {1, 2, . . . } × τS1

I ES(0) = 0

ES(τu)
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Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

Key properties of a solver

0 τu

ES(τu), D(τu)

ES1(τu)

D(τu)

ES2(τu)

It is sometimes better to choose a
less efficienta solver with shorter
preparation step duration τ1.

aper iteration

Keep in Mind

Gradient-based studies

Bemporad and Patrinos (2012), Jones et al. (2012), MA (2013).

Heuristics for second order methods

Bock et al. SIAM (2007)

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 15 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

Key properties of a solver

0 τu

ES(τu), D(τu)

ES1(τu)

D(τu)

ES2(τu)

It is sometimes better to choose a
less efficienta solver with shorter
preparation step duration τ1.

aper iteration

Keep in Mind

Gradient-based studies

Bemporad and Patrinos (2012), Jones et al. (2012), MA (2013).

Heuristics for second order methods

Bock et al. SIAM (2007)

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 15 / 37
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Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

xk+1 = Axk + B

(
uk
wk

)
yk = Cxk + D

(
uk
wk

)

Constraints are bounds on the
state and control components

(affine in u)

⇓

QP problems to be solved at
each updating period
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Back to Cryogenics

Source: Fr. Bonne PhD defense

I Output Turbine temperature
must be higher than some
threshold to avoid solid
droplets

I The helium bath level must
remains between a lower and
an upper bound to avoid
extreme situation

→ ymin ≤ yk ≤ ymax
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Back to Cryogenics

Source: Fr. Bonne PhD defense

I Valves opening is constrained
between 0 and 100%

I Speed of valve opening is also
limited(
umin

δmin

)
≤
(
uk
δuk

)
≤
(
umax

δmax

)
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Back to Cryogenics

Source: Fr. Bonne PhD defense

Degrees of freedom:

p = uk :=
(
uk uk+1 . . . uk+Np−1

)
Cost function:

J(p, xk) :=

Np∑
i=1

‖xk+i (p)− xrefk+i‖2
Q

+

Np−1∑
i=0

‖uk+i (p)− urefk+i‖2
Q
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Back to Cryogenics: The QP-OASES Solver
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Back to Cryogenics: Results

Soft constraints Up to 800-1000 iterations !

Is it real-time compatible ?
nu = 3 + 2× 2 = 7

Np = 100 → np = 700 !!
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Back to Cryogenics: Reducing the problem’s complexity

The cost of a single iteration depends on:

I The number of decision variables np (dimension of p)

I The number of constraints nc (number of line in A)

Using linear interpolation:

np : 700→ 49

Checking constraints only at
some chosen instants

nc : 1000→ 98
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Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the reduced dimensional parametrization
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Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the original parametrization
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Back to Cryogenics: Real-Time Considerations

Schneider TSX premium PLC

Time needed for a Cholesky
factorization

Only 10 iterations of QP-OASES
can be performed during the sam-
pling period
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Back to Cryogenics: Results with interrupted QPOASES solver

QPOASES limited to 10 iterations
QPOASES without interruption

Source: Fr. Bonne PhD defense
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What happened?

Typical behavior of active set solvers
C

o
n

st
ra

in
ts

vi
o

la
ti

o
n

in
d

ic
at

or

Number of iterations

less efficient

less
effi

cient?

Try a new solver with

I Potentially degraded asymptotic
quality But,

I with faster decrease and cheaper
elementary iteration

Source: Fr. Bonne PhD defense

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

What happened?

Typical behavior of active set solvers
C

o
n

st
ra

in
ts

vi
o

la
ti

o
n

in
d

ic
at

or

Number of iterations

less efficient

less
effi

cient?

Try a new solver with

I Potentially degraded asymptotic
quality But,

I with faster decrease and cheaper
elementary iteration

Source: Fr. Bonne PhD defense

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

What happened?

Typical behavior of active set solvers
C

o
n

st
ra

in
ts

vi
o

la
ti

o
n

in
d

ic
at

or

Number of iterations

less efficient

less
effi

cient?

Try a new solver with

I Potentially degraded asymptotic
quality But,

I with faster decrease and cheaper
elementary iteration

Source: Fr. Bonne PhD defense

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

What happened?

Typical behavior of active set solvers
C

o
n

st
ra

in
ts

vi
o

la
ti

o
n

in
d

ic
at

or

Number of iterations

less efficient

less
effi

cient?

Try a new solver with

I Potentially degraded asymptotic
quality But,

I with faster decrease and cheaper
elementary iteration

Source: Fr. Bonne PhD defense

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

What happened?

Typical behavior of active set solvers
C

o
n

st
ra

in
ts

vi
o

la
ti

o
n

in
d

ic
at

or

Number of iterations

less efficient

less
effi

cient?

Try a new solver with

I Potentially degraded asymptotic
quality But,

I with faster decrease and cheaper
elementary iteration

Source: Fr. Bonne PhD defense

M. Alamir, Process Control’15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37



Outline Cryogenics MPC Trade-offs About certification Which solver? Which updating strategy?

Solver based on integrating stiff ODEs

min
p

[J0(p)] under g(p) ≤ 0

min
p

[J(p)] :=
[
J0(p) + ρmax{0, g(p)}2

]
Embed constraints in cost

ṗ = −
[
∂J

∂p
(p)

]Solve the stiff ODE

20 iterations are possible (instead of 10 for QPOASES)

Consequence
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Comparison between RT-performances of QPOASES and ODE-solver

QPOASES unlimited
QPOASES limited to 10 iterations
ODE-solver limited to 20 iterations

Source: Fr. Bonne PhD defense
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Why ?

Normalized computation power Normalized computation power

Cost (OL) Maximum constraints violation

Mean constraints violation Cost (CL)

available power available power

QPOASES is better in an ideal world . . . !

ODE-solver is better HERE

QPOASES / ODE-solver

Source: Fr. Bonne PhD defense
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Regarding the Solver Choice

1) In RT-MPC, what does matter is the Arithmetical
Complexity and not the Analytical Complexity1.

2) In RT-MPC, what does matter is the Transient Be-
havior and not the Asymptotic Behavior.

Arithmetical Number of elementary operations
Analytical Number of iterations

1 Y.Nesterov. Introductory lectures in convex optimization 2004

Keep in Mind
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Updating Scheme For a Given Solver

Assume that a solver S has been chosen . . .

Is there any remaining choice ?
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What is the optimal τu for a given solver?

0 τu

ES(τu) ≥ D(τu) ?

D(τu)

ES(τu)

Given S, how to adapt τu?
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Updating τu is a control problem . . . !

pk+1 = S(q(τu))
(
pk

+, xk)
)

xk+1 = f
(
xk ,U(0, pk)

) y
w

τu

τu = K (. . . )

Complexity: (5±, 5×, 5÷ and 1 log)

M.A. ECC (2013)
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Updating τu is a control problem . . . !

(
pk+1

xk+1

)
= F

((pk
xk

)
, τu

)

y = J(pk , xk)

y
w

τu

τu = K (. . . )

Complexity: (5±, 5×, 5÷ and 1 log)

M.A. ECC (2013)
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Updating τu is a control problem . . . !

z+ = F (z, τu)

y = J(z)

y
w

τu

τu = K (. . . )

Complexity: (5±, 5×, 5÷ and 1 log)

M.A. ECC (2013)
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Updating τu is a control problem . . . !

z+ = F (z,w, τu)

y = J(z)

y
w

τu

τu = K (. . . )

Complexity: (5±, 5×, 5÷ and 1 log)

M.A. ECC (2013)
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q = 2 without adaptation

MA, ECC (2013)
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q = 100 without adaptation

MA, ECC (2013)
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q(0) = 2 with adaptation

MA, ECC (2013)
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The integer N(p(0), ε) s.t

|J(p(i), xk)−J(popt , xk)| ≤ ε

for all i ≥ N(p(0), ε).

Certification bound

Bemporad and Patrinos (2012)
Richter et al. Automatica (2012)
Jones et al. (2012)
MA (2015)

Reminder → Arithmetical/Analytical Complexity

When available

No of iterations (q) ⇔ guaranteed precision (ε)

Easier to include in stability
analysis

Solver certification
6=

MPC Certification
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Solver
Certification

Hardware
Performance

Ideal Stability
Characteristics

Uncertainty
Level

Current Guess
Quality

MPC
Certification

MA. From Certification of Algorithms To Certified MPC. NMPC2015, Seville.
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Certified Real-time MPC needs Co-Design approach involving:

I Carefully chosen Certified Solver

I Carefully designed MPC Formulation

I Carefully chosen embedded computation facility

I Carefully characterized uncertainties and set-point dynamics

I Carefully chosen initialization rule

Conclusion

Remember! MPC was first successful, theory only followed . . .
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