On Trade-offs Governing Real-Time Implementation of Model Predictive Control

Mazen Alamir

CNRS, University of Grenoble

Overview of the talk

Cryogenic refrigerators

Ideal MPC

Real-Time MPC

Trade-offs

MPC certification

1

Source: https://www.euro-fusion.org

Why?

Provide refrigeration capacity to cool

down the supra-conducting coils used to accelerate the plasma in Nuclear Fusion Reactors (ITER, JT60)

< A

∃ ► < ∃ ►</p>

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T)=(Entropy,Temperature) plan.

$$\int dQ = \underbrace{\int_{\mathcal{C}_1} TdS}_{>0} + \underbrace{\int_{\mathcal{C}_2} TdS}_{<<0}$$

Source: F. Bonne PhD (2014).

How?

.

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T)=(Entropy, Temperature) plan.

$$\int dQ = \underbrace{\int_{\mathcal{C}_1} TdS}_{>0} + \underbrace{\int_{\mathcal{C}_2} TdS}_{<<0}$$

1

How?

.

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T)=(Entropy, Temperature) plan.

$$\int dQ = \underbrace{\int_{\mathcal{C}_1} TdS}_{>0} + \underbrace{\int_{\mathcal{C}_2} TdS}_{<<0}$$

Source: F. Bonne PhD (2014).

Source: F. Bonne PhD (2014).

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T)=(Entropy, Temperature) plan.

$$\int dQ = \underbrace{\int_{\mathcal{C}_1} TdS}_{>0} + \underbrace{\int_{\mathcal{C}_2} TdS}_{<<0}$$

M. Alamir, Process Control'15, Slovak Republic, June 2015

Source: F. Bonne PhD (2014).

How?

Force a thermodynamic fluid to make a counter-clock cycle in the (S, T)=(Entropy,Temperature) plan.

$$\int dQ = \underbrace{\int_{\mathcal{C}_1} TdS}_{>0} + \underbrace{\int_{\mathcal{C}_2} TdS}_{<<0}$$

Why MPC?

1

э

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 5 / 37

Why MPC?

State constraints

Why MPC?

- State constraints
- Control Saturation

Why MPC?

- State constraints
- Control Saturation
- Coupled dynamics
- Inverse response

Ideal MPC: The key assumptions

Keep in mind

In the **ideal framework**, when the horizon moves, the hot start \hat{p}_k^+ computed from the previous optimal solution \hat{p}_k satisfies:

 $J(\hat{p}_k^+, \mathbf{x}_{k+1}) \leq J(\hat{p}_k, \mathbf{x}_k)$

Mayne et al. Automatica (2000).

- Formulation involving Final constraints
- \hat{p}_k sufficiently good

Ideal MPC: The key assumptions

Keep in mind

In a **realistic framework**, when the horizon moves, the hot start p_k^+ computed from the previous solution p_k satisfies:

$$J(p_k^+, \mathbf{x}_{k+1}) = J(p_k, \mathbf{x}_k) + D(\tau_u)$$

D(0) = 0 $D(\tau_u)$ is not necessarily ≤ 0 .

- Formulation involving Final constraints
- \hat{p}_k sufficiently good

Ideal MPC: The key assumptions

Keep in mind

In a **realistic framework**, when the horizon moves, the hot start p_k^+ computed from the previous solution p_k satisfies:

$$J(\boldsymbol{p}_k^+, \mathbf{x}_{k+1}) = J(\boldsymbol{p}_k, \mathbf{x}_k) + D(\tau_u)$$

D(0) = 0 $D(\tau_u)$ is not necessarily ≤ 0 . Even with **perfect undisturbed** model

1. Predict $\tilde{\mathbf{x}}_k$

- 1. Predict $\tilde{\mathbf{x}}_k$
- 2. During $[t_{k-1}, t_k]$ Compute $\hat{p}(\tilde{\mathbf{x}}_k)$ [and $\frac{\partial \hat{p}_k}{\partial \mathbf{x}}$]
- 3. Once \mathbf{x}_k is available:

$$\hat{p}_k \leftarrow \hat{p}(\tilde{\mathbf{x}}_k) + \left[\frac{\partial \hat{p}_k}{\partial \mathbf{x}}\right] \cdot \delta_x$$

Definition of Fast NMPC Problems

 $\tau_{\rm u}$ is the time between two control updating

 τ_u is the time during which there is no feedback

イロト イポト イヨト イヨト

э

$$\Rightarrow \tau_u \leq \tau_u^{max}$$

Definition of Fast NMPC Problems

 τ_u is the time between two control updating

 τ_u is the time during which there is no feedback

$$\Rightarrow \tau_u \leq \tau_u^{max}$$

Fast NMPC Problems Fast NMPC problems are those for which

```
\tau_{solve}(NLP(\mathbf{\tilde{x}}_k)) \geq \tau_u^{max}
```

The Iterative Process

 $p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \tilde{\mathbf{x}}_k)$

イロト イポト イヨト イヨト

Ξ

The Iterative Process

The Iterative Process

$$\left(p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \mathbf{ ilde{x}}_k)
ight)$$

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37

The Iterative Process

$$\left(p^{(i+1)} \leftarrow \mathcal{S}(p^{(i)}, \mathbf{\tilde{x}}_k)\right)$$
The Iterative Process

The Iterative Process

dynamic equation for
$$p$$

 $p_k := S^{(q)}(p_{k-1}^+, \mathbf{x}_{k-1})$

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 10 / 37

Sufficient Conditions of Success

Sufficient Conditions of Success

Sufficient Conditions of Success

イロト イヨト イヨト イヨト

Ξ

 $E^{\mathcal{S}}(\tau_u) > D(\tau_u)$

イロト イポト イヨト イヨト

Ξ

イロト イポト イヨト イヨト

Ξ

- 4 同 1 4 日 1 4 日 1

э

- 4 同 1 4 日 1 4 日 1

イロト イヨト イヨト イヨト

Ξ

イロト イポト イヨト イヨト

Ξ

(4 回 ト 4 ヨ ト 4 ヨ ト

Ξ

(4) E (4) E (4)

э

Key properties of a solver

Keep in Mind

It is sometimes better to choose a less efficient^a solver with shorter preparation step duration τ_1 .

^aper iteration

Key properties of a solver

Keep in Mind

It is sometimes better to choose a less efficient^a solver with shorter preparation step duration τ_1 .

^aper iteration

Gradient-based studies

Bemporad and Patrinos (2012), Jones et al. (2012), MA (2013).

Heuristics for second order methods

Bock et al. SIAM (2007)

Back to Cryogenics

After linearization:

$$x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$
$$y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$

э

э.

Source: Fr. Bonne PhD defense

< 口 > < 同

∃ ▶ ∢

Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

$$x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$
$$y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 16 / 37

Back to Cryogenics

Source: Fr. Bonne PhD defense

After linearization:

$$x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$
$$y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$

Constraints are bounds on the state and control components

 $(affine in \mathbf{u})$

Source: Fr. Bonne PhD defense

After linearization:

$$x_{k+1} = Ax_k + B\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$
$$y_k = Cx_k + D\begin{pmatrix} u_k \\ w_k \end{pmatrix}$$

Constraints are bounds on the state and control components

 $(\text{affine in } \boldsymbol{u})$

\Downarrow

QP problems to be solved at each updating period

Source: Fr. Bonne PhD defense

- Output Turbine temperature must be higher than some threshold to avoid solid droplets
- The helium bath level must remains between a lower and an upper bound to avoid extreme situation

$$ightarrow$$
 ymin \leq y_k \leq ymax

Source: Fr. Bonne PhD defense

- Valves opening is constrained between 0 and 100%
- Speed of valve opening is also limited

$$\begin{pmatrix} u_{min} \\ \delta_{min} \end{pmatrix} \le \begin{pmatrix} u_k \\ \delta u_k \end{pmatrix} \le \begin{pmatrix} u_{max} \\ \delta_{max} \end{pmatrix}$$

3

Source: Fr. Bonne PhD defense

Degrees of freedom:

$$\boldsymbol{p} = \mathbf{u}_k := \begin{pmatrix} u_k & u_{k+1} & \dots & u_{k+N_p-1} \end{pmatrix}$$

Cost function:

$$egin{aligned} &\mathcal{U}(m{p}, \mathbf{x}_k) := \sum_{i=1}^{N_p} \|\mathbf{x}_{k+i}(m{p}) - \mathbf{x}_{k+i}^{ref}\|_Q^2 \ &+ \sum_{i=0}^{N_p-1} \|u_{k+i}(m{p}) - u_{k+i}^{ref}\|_Q^2 \end{aligned}$$

< 口 > < 同

ヨト イヨト ニヨ

Back to Cryogenics: The QP-OASES Solver

M. Alamir, Process Control'15, Slovak Republic, June 2015

On Trade-offs Governing RT-Implementation of MPC 19 / 37

Is it real-time compatible ?

 $n_u = 3 + 2 \times 2 = 7$ $N_p = 100 \rightarrow n_p = 700 !!$

Back to Cryogenics: Reducing the problem's complexity

The cost of a single iteration depends on:

- The number of decision variables n_p (dimension of p)
- The number of constraints n_c (number of line in A)

 $n_p:700 \rightarrow 49$

Checking constraints only at some chosen instants

 $n_c: 1000 \rightarrow 98$

Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the reduced dimensional parametrization

Back to Cryogenics: Simulation of the reduced dimensional formulation

Results with the original parametrization

Back to Cryogenics: Real-Time Considerations

Back to Cryogenics: Results with interrupted QPOASES solver

QPOASES limited to 10 iterations QPOASES without interruption

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37

M. Alamir, Process Control'15, Slovak Republic, June 2015 On Trade-offs Governing RT-Implementation of MPC 25 / 37

Solver based on integrating stiff ODEs

Comparison between RT-performances of QPOASES and ODE-solver

QPOASES unlimited QPOASES limited to 10 iterations ODE-solver limited to 20 iterations

Why ?

QPOASES / ODE-solver

Why? available power available power Cost (OL) Maximum constraints violation 10^{8} 40. **----** x10 30**—** x1 5 10^{6} 2010 10^{4} Cost (CL) Mean constraints violation 10^{6} 6**----** x10 \mathcal{J}^{BF} **—** x1 10^{5} 20 0 10^{4} 10^{0} 10^{1} 10^{0} 10^{1} Normalized computation power Normalized computation power

QPOASES / ODE-solver

Why?

available power

available power

QPOASES / ODE-solver

∃ ► 4

Source: Fr. Bonne PhD defense

Regarding the Solver Choice

Keep in Mind

1) In RT-MPC, what does matter is the **Arithmetical** Complexity and not the **Analytical** Complexity¹.

2) In RT-MPC, what does matter is the **Transient** Behavior and not the **Asymptotic** Behavior.

ArithmeticalNumber of elementary operationsAnalyticalNumber of iterations

Y.Nesterov. Introductory lectures in convex optimization 2004

Updating Scheme For a Given Solver

Assume that a solver ${\mathcal S}$ has been chosen \ldots

Is there any remaining choice ?

What is the optimal τ_u for a given solver?

What is the optimal τ_u for a given solver?

What is the optimal τ_u for a given solver?

э

$$p_{k+1} = \mathcal{S}^{(q(\tau_u))}(p_k^+, \mathbf{x}_k))$$

- ∢ /⊐ ►

3 🕨 🖌 🖻

$$p_{k+1} = S^{(q(\tau_u))}(p_k^+, \mathbf{x}_k))$$

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathcal{U}(0, p_k))$$

э

$$\begin{pmatrix} p_{k+1} \\ \mathbf{x}_{k+1} \end{pmatrix} = F\left(\begin{pmatrix} p_k \\ \mathbf{x}_k \end{pmatrix}, \tau_u \right)$$

э

$$\begin{pmatrix} p_{k+1} \\ \mathbf{x}_{k+1} \end{pmatrix} = F\left(\begin{pmatrix} p_k \\ \mathbf{x}_k \end{pmatrix}, \tau_u \right) \\ y = J(p_k, \mathbf{x}_k) \end{pmatrix}$$

э

$$z^+ = F(z, \tau_u)$$

$$y = J(z)$$
イロト イヨト イヨト イヨト

э

$$\left[\begin{array}{rcl} \mathbf{z}^+ &=& F(\mathbf{z}, \mathbf{w}, \tau_u) \\ y &=& J(\mathbf{z}) \end{array} \right]$$

→ Ξ →

- 一司

∃ ⊳

∃ ► < ∃ ►</p>

Certification bound

The integer $N(p^{(0)}, \epsilon)$ s.t

$$|J(p^{(i)},\mathbf{x}_k)-J(p^{opt},\mathbf{x}_k)| \leq \epsilon$$

for all $i \geq N(p^{(0)}, \epsilon)$.

Bemporad and Patrinos	(2012)
Richter et al. Automatica	(2012)
Jones et al.	(2012)
MA	(2015)

∃ ► < ∃ ►</p>

The integer $N(p^{(0)}, \epsilon)$ s.t

$$|J(p^{(i)},\mathbf{x}_k)-J(p^{opt},\mathbf{x}_k)| \leq \epsilon$$

for all $i \geq N(p^{(0)}, \epsilon)$.

Bemporad and Patrinos(2012)Richter et al. Automatica(2012)Jones et al.(2012)MA(2015)

 $\underbrace{\mathsf{When available}}_{\mathsf{N}^{\circ} \text{ of iterations } (q) \Leftrightarrow \text{ guaranteed precision } (\epsilon)}$

The integer $N(p^{(0)}, \epsilon)$ s.t

$$|J(p^{(i)},\mathbf{x}_k)-J(p^{opt},\mathbf{x}_k)| \leq \epsilon$$

for all $i \geq N(p^{(0)}, \epsilon)$.

Bemporad and Patrinos(2012)Richter et al. Automatica(2012)Jones et al.(2012)MA(2015)

 N° of iterations $(q) \Leftrightarrow$ guaranteed precision (ϵ)

Easier to include in stability analysis

When available

The integer $N(p^{(0)}, \epsilon)$ s.t

$$|J(p^{(i)},\mathbf{x}_k)-J(p^{opt},\mathbf{x}_k)| \leq \epsilon$$

for all $i \geq N(p^{(0)}, \epsilon)$.

Bemporad and Patrinos	(2012)
Richter et al. Automatica	(2012)
Jones et al.	(2012)
MA	(2015)

Reminder \rightarrow Arithmetical/Analytical Complexity

 N° of iterations $(q) \Leftrightarrow \mathsf{guaranteed} \ \mathsf{precision} \ (\epsilon)$

Easier to include in stability analysis

When available

MA. From Certification of Algorithms To Certified MPC. NMPC2015, Seville.

- 4 ⊒ →

MA. From Certification of Algorithms To Certified MPC. NMPC2015, Seville.

イロト イポト イヨト イヨト

Conclusion

Certified Real-time MPC needs Co-Design approach involving:

- Carefully chosen Certified Solver
- Carefully designed MPC Formulation
- Carefully chosen embedded computation facility
- Carefully characterized uncertainties and set-point dynamics
- Carefully chosen initialization rule

Remember! MPC was first successful, theory only followed

Acknowledgment

PhD students

R. Amari, F. Bonne, F. Clavel, C. Dedouits, A. Hably, M. Y. Lamoudi, H. Mesnage, N. Marchand, A. Murilo, P. Pflaum.

Industrial Partners

P. Tona (IFPEN)
N. Perrissin-Fabert (ALSTOM)
P. Bonnay (CEA-INAC-SBT)
P. Béguery, C. Le Pape (SCHNEIDER ELECTRIC)
P. D. Gualino (SCHNEIDER ELECTRIC)

GIPSA-lab staff

M. R. Alfara, P. Bellemain, G. Buche, Ch. Bulfone, O. Chabert, M. Di-Maria, J.

Dumon, A. Fradin, E. Genin, C. Mendes, V. Messina, A. Mokhtari, S. Noguera, J. M. Thiriet,

Academic Partners

G. Bornard, L. Del Re, P. Ortner, R. Furhapter N. Sheibat-Othman, S. Othman J. P. Corriou, F. Boyer.

(4 個)ト イヨト イヨト

Institutions

CNRS ANR Grenoble-Inp Université Jospeh Fourier