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Linear Matrix Inequalities

— Have found widespread use in control
— Very flexible and practical for specifying conditions on quadratic functions (in

control often related to quadratic Lyapunov functions).
— E.g., estimating the rate of decrease of a quadratic Lyapunov function. We

want to maximize γ subject to d
dt (xTPx) <−γxT Ix for the autonomous

dynamics ẋ = Ax. This can be expressed as

ATP +PA<−γI

— The < here refers to sign definiteness of matrices. I.e., (γI +ATP +PA) is
required to be a negative definite matrix. The condition on the decrease of the
LF is hence fulfilled for any x.

— LMIs constitute convex constraints in optimization problems. If we have a
convex objective function, depending on decision variables that enter linearly
in the LMI constraints, the overall problem is convex (and hence suitable for
efficient optimization).
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Working with Linear Matrix Inequalities

— There is a number of ’standard tricks’ to get an expression into the form of an
LMI. Will here only mention the Schur complement:

E−FTP−1F > 0 and P > 0⇐⇒
[
E FT

F P

]
> 0

This follows from the identity[
E FT

F P

]
=
[
IE FTP−1
0 IP

][
E−FTP−1F 0

0 P

][
IE 0

P−1F IP

]
— The Schur complement allows replacing a non-linear expression with a linear

expression in a higher-dimensional space.
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Using the Schur complement

Controller design for a discrete time system.

P− (A+BK )TP(A+BK ) > 0⇔
[

P (A+BK )TP
P(A+BK ) P

]
> 0

Pre- and postmultiply with [
P−1 0
0 P−1

]
to obtain [

P−1 P−1(A+BK )T
(A+BK )P−1 P−1

]
> 0

which is linear in P−1 and Y = KP−1.

Note the implicit assumption that P−1 (and hence also P) is symmetric and
positive definite.
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Non-negative polynomials and sums of squares

— Proving that a polynomial is positive is in general not a tractable problem.
— Most convenient practical approach is to prove that the polynomial is a sum of

squares
• Not all positive polynomials are sums of squares

— A sum of squares is non-negative (may be zero if all squared terms share a
common root).

— Finding a sum of squares decomposition is a convex problem.
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LMIs and SOS
— In LMIs we (implicitly) pre- and post-multiply the matrix with a vector. I.e.,

L> 0⇔ xTLx > 0 ∀x 6= 0.
— SOS problems also use an ’LMI-like’ approach. In this case, the vector

(implicitly) pre- and postmultiplying the matrix is a vector of monomials, e.g.[
1 x1 x2 x21 x1x2 x22 · · ·

]T
.

— Since the elements of the vector are not independent, we get extra
parameters entering the matrix, for example (from Parillo)

F (x1,x2) = 2x41 +2x31x2−x21x
2
2 +5x42 =

 x21
x22
x1x2

T 2 0 1
0 5 0
1 0 −1

 x21
x22
x1x2



=

 x21
x22
x1x2

T  2 −λ 1
−λ 5 0
1 0 −1+2λ

 x21
x22
x1x2


If a value for λ is found for which the matrix is positive definite, then F (x1,x2)
is a sum of squares (which is the case in the above example).
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SOS and scalarization

— We may have matrix valued SOS. The polynomial matrix M(x) is a
matrix-valued SOS if it can be decomposed as M(x) = FT (x)F (x).

— For LMIs, using scalar expression has no purpose, L> 0⇔ xTLx > 0 ∀x 6= 0.
— For SOS, M(x) > 0 is not equivalent to xTM(x)x > 0.

M(x) > 0⇔ zTM(x)z > 0 ∀z, where there is no relationship between x and z.
— It is therefore much less conservative to express a condition in the scalar form

xTM(x)x > 0, if possible.
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A scalarized Schur complement

Given a matrix
M(x) =

[
E(x) FT (x)
F (x) P(x)

]
with P(x) symmetric and invertible. Then[

x
z

]T
M(x)

[
x
z

]
> 0, ∀(x,z) 6= (0,0)

is equivalent to

xT (E(x)−FT (x)P(x)−1F (x))x > 0∀x 6= 0 and zTP(x)z > 0∀z 6= 0
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Scalarized Schur...

This follows from the identity

M(x) =
[
IE FT (x)P−1
0 IP

][
E(x)−FT (x)P−1F (x) 0

0 P

][
IE 0

P−1F (x) IP

]
by observing that [

IE 0
P−1F (x) IP

][
x
w

]
=
[
x
z

]
Whatever the value of x, w can be chosen to produce any value of z, and vice
versa.
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Solving LMI and SOS problems

— LMI and SOS problems where decision variables enter linearly, with a convex
objective function, are convex optimization problems.

— Decent software exists for these problems. The user can therefore focus on
problem formulation, little need to know the details of the mathematical
solution procedure.

— Recommended literature for LMIs: Carsten Scherer’s course notes. For SOS,
some reference literature is also becoming available, e.g., G. Chesi’s book on
Springer LNCIS.

— ...
— Unfortunately, many problems (especially SOS) result in a bilinear problem

formulation. Optimization solvers for bilinear problems exist - but can fail for
many problems.

— Iterative solution procedures are therefore often necessary. These can be
highly dependent on a good initial point.
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Introduction of MMC
— a large number of voltage

cells connected in series
— by inserting desired number

of cells, ’any’ voltage level
can be produced

— less harmonics
— no need for AC filters
— redundancy is higher
— lower switching frequency

and semiconductor loss
— reduced manufacturing cost

due to similarity of cells

vi
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MMC in HVDC system

— Besides other applications, MMC has become the most promising converter
topology for HVDC stations

— MMC-HVDC projects:

Project Trans Bay Nanhui Southwest Dalian France Zhoushan
DC Volt-
age ± 200 kV ±30 kV ±300 kV ±320 kV ±320 kV ±200 kV
Power 400MW 20MW 1440MW 1000MW 1000MW 400MW
Length 80 km 8.4 km 250 km 43 km 65 km 134 km
operated
by Siemens C-EPRI Alstom C-EPRI Siemens C-EPRI
Year 2010 2011 2015 2013 2015 2015
Location San

Francisco Shanghai Sweden China France China

type underwater offshore
windfarm

city con-
nection

under
ground

under
ground

multi
terminal
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MMC in HVDC system

— Tennet off-shore wind farm complex
— in North Sea near to the German coast :
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MMC Control difficulties

— the control of the MMC converter is not as easy as other types of converters:
• Control of power transfer
• Balancing capacitor voltages
• Reducing circulating current
• Decrease switching frequency and loss
• Decrease communication load

— The control problem becomes a Multi-Input Multi-Output problem and
classical PI controllers does not satisfy the objectives

— Advanced control methods is introduced in recent years for MMC control:
• Repetitive control
• Model Predictive Control
• Proportional Resonant controller
• Optimization with Lagrange multipliers
• ...
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The goal

— The MMC is modeled as a discrete-time bilinear system

xk+1 = Axk +
m
∑
i=1

(Bixk +bi )ui,k = Axk + (Bx +B)uk

— the nonlinearity consists of products between the states and input
— To stabilize the system, the Lyapunov inequality

V (xk )−V (xk+1) = xTk Pxk −xTk+1Pxk+1 > 0

should be fulfilled.
— The SOS method is used to design the controller, using the YALMIP package

(in MATLAB). The controller is in the form of ratio of two polynomials (for each
input):

ui (x) = ci (xk )
c0(xk )
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Controller design by SOS method in YALMIP
Theorem
Region of convergence: Given a quadratic function V (x) = xTPx, polynomials
ci (x), i ∈ [1, . . . ,m], and SOS polynomials ć0(x) and s1(x,z), a bilinear discrete time
system in closed loop with the control law

u(x) = C(x)x
(ć0(x) +1)

is stable ∀x|xTPx < γ, provided[
x
z

]T
M(x)

[
x
z

]
−s1(x,z)(γ−xTPx) > 0

where

M(x) =
[

(ć0(x) +1)P ((ć0(x) +1)A+ (Bx +B)C(x))TP
P((ć0(x) +1)A+ (Bx +B)C(x)) (ć0(x) +1)P

]
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Input constraints

Input constraints are easily included in the controller design by another SOS
condition (in a way very similar to what is done for LMIs)
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List of variables

— states:
• iv,dq ac-side currents in dq reference frame
• icir,dq circulating currents in dq reference frame
• id0 dc component of the circulating current
• W the total stored energy in the converter
• ∆W energy difference between the upper and lower arms

— inputs
• Vu,dq upper arm voltage in the dq reference frame
• Vl,dq lower arm voltage in the dq reference frame
• Vd0 the dc component of arm voltages

— Other parameters
• ω rotating frequency of source voltage
• vf ,dq the ac-side voltage of the converter
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MMC model in the dq frame
— for the ac side current in dq reference frame:

div,dq
dt =

[
−R+2Rc

L+2Lc ω

−ω −R+2Rc
L+2Lc

]
iv,dq +

vu,dq−vl,dq
L+2Lc

+
2vf ,dq
L+2Lc

.

— Circulating current: dicir,dq
dt =

[
−R

L ω

−ω −R
L

]
icir,dq− 1

2L (vu,dq +vl,dq),

— dc component of circulating current: did0
dt =−R

L id0−
1
2LVd0 + 1

2LVdc
— the stored energy dynamics:

dW
dt = dWu

dt + dWl
dt =− 3

4vu,d iv,d + 3
2vu,d icir,d −

3
4vu,q iv,q + 3

2vu,q icir,q + 3
4vl,d iv,d

+ 3
2vl,d icir,d + 3

4vl,q iv,q + 3
2vl,q icir,q +3Vd0icir,0,

d∆W
dt = dWu

dt −
dWl
dt =−3

4vu,d iv,d + 3
2vu,d icir,d −

3
4vu,q iv,q + 3

2vu,q icir,q−
3
4vl,d iv,d

− 3
2vl,d icir,d −

3
4vl,q iv,q−

3
2vl,q icir,q.
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MMC model in the dq frame
the bilinear model of MMC

ẋ(t) =



− R+2Rc
L+2Lc

w 0 0 0 0 0

−w − R+2Rc
L+2Lc

0 0 0 0 0

0 0 − R
L w 0 0 0

0 0 −w − R
L 0 0 0

0 0 0 0 − R
L 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


︸ ︷︷ ︸

Ac

x(t) +



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
− 3

4 0 3
2 0 0 0 0

− 3
4 0 3

2 0 0 0 0


︸ ︷︷ ︸

B1c

x(t)u1

+



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 − 3

4 0 3
2 0 0 0

0 − 3
4 0 3

2 0 0 0


︸ ︷︷ ︸

B2c

x(t)u2 +



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
3
4 0 3

2 0 0 0 0
− 3

4 0 − 3
2 0 0 0 0


︸ ︷︷ ︸

B3c

x(t)u3 +



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 3

4 0 3
2 0 0 0

0 − 3
4 0 − 3

2 0 0 0


︸ ︷︷ ︸

B4c

x(t)u4

+



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 0 0


︸ ︷︷ ︸

B5c

x(t)u5 +



1
L+2Lc

0
− 1

2L
0
0
0
0


︸ ︷︷ ︸

b1c

u1 +



0
1

L+2Lc
0
− 1

2L
0
0
0


︸ ︷︷ ︸

b2c

u2 +



− 1
L+2Lc
0
− 1

2L
0
0
0
0


︸ ︷︷ ︸

b3c

u3 +



0
− 1

L+2Lc
0
− 1

2L
0
0
0


︸ ︷︷ ︸

b4c

u4 +



0
0
0
0
− 1

2L
0
0


︸ ︷︷ ︸
b4c

u5 +



2vf ,d
L+2Lc
2vf ,q
L+2Lc

0
0

Vdc
2L
0
0


︸ ︷︷ ︸

dc
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Control block diagram

— The following system is simulated in PLECS/MATLAB
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Activation of controller
— Activation of controller at t = 0.15 s
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Convergence to the operating point
— Before activation of the controller, the states are far from their references.
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Convergence to the operating point
— Before activation of the controller, the states are far from their references.
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Real power flow reversal command
— Initially, the MMC system is in a steady-state condition, transferring P = 40MW

to the ac grid. At t = 0.2 s, the real power flow is reversed to P =−40MW.
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Real power flow reversal command
— Initially, the MMC system is in a steady-state condition, transferring P = 40MW

to the ac grid. At t = 0.2 s, the real power flow is reversed to P =−40MW.
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State Trajectories and Lyapunov Function
— for different initial points
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Power converter modeling
A wide variety of power converters are modeled as switched systems with a
specific model for each switching status as

switch status on : ẋ(t) = A1x(t) +B1v,
switch status off: ẋ(t) = A2x(t) +B2v,

where state x represents capacitor voltages and inductor currents and vector v
represents source voltages and diode voltages.

A Pulse Width Modulation (PWM) signal with switching frequency fs = 1/Ts
controls the on/off status of the converter switches. The sum of ton and toff for
each switch is equal to the switching period Ts.

The duty cycle d is defined as the ratio of ton/Ts and consequently toff = (1−d)Ts.

The duty cycle d is the control input.
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Power converter modeling
Assuming that the inductor current is not saturated and by considering the duty
cycle definition, the average model of the converter is formulated as

ẋ(t) = (d(t)A1 + (1−d(t))A2)x(t) + (d(t)B1 + (1−d(t))B2)v
which can be simplified and reformulated as

ẋ(t) = A2︸︷︷︸
Ac

x(t) + (A1−A2)︸ ︷︷ ︸
Bcb

x(t)d(t) + (B1v−B2v)︸ ︷︷ ︸
Bc

d(t) +B2v︸︷︷︸
dc

. (1)

Equation (1) is in the form of a standard bilinear continuous time system:
ẋ(t) = Acx(t) +Bcbx(t)u(t) +Bcu(t) +dc,

where u(t) = d(t) is the input of the system. In general, for converters with more
than one switch, the averaged continuous time bilinear model of the converter is
represented by

ẋ(t) = Acx(t) +
m
∑
i=1

(Bcb,ix(t) +Bc,i )ui (t) +dc, (2)

where ui = di is the duty cycle of the ith switch and m is the number of switches.
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Introducing deviation variables
The desired equilibrium operating point of the bilinear model of the converter is
nonzero. By defining the desired equilibrium state vector and input as xss and dss,
respectively, the coordinate transformation is defined by

x̃ = x−xss , d̃ = d−dss. (3)
Substituting for the state variables and input from (3) in (2) yields

˙̃x(t) = Ac(x̃(t) +xss) +
m
∑
i=1

(Bcb,i (x̃(t) +xss) +Bc,i )(d̃i (t) +dss
i ) +dc. (4)

Equation (4) can be decomposed into two equations. The first equation represents
the desired steady state operation

Acxss +
m
∑
i=1

(Bcb,ixss +Bc,i )dss
i +dc = 0, (5)

while the second equation represents the dynamics of the converter in deviation
variables

˙̃x(t) = (Ac +
m
∑
i=1

Bcb,idss
i )x̃(t) +

m
∑
i=1

(Bcb,i x̃(t) +Bcb,ixss +Bc,i )d̃i (t). (6)
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Discrete time model

Based on (6) and assuming a sampling period of Ts, the discrete-time bilinear
model of the converter, based on a forward Euler approximation, becomes

x̃k+1 = (TsAc +Ts
m
∑
i=1

Bcb,idss
i + I)︸ ︷︷ ︸

A

x̃k

+
m
∑
i=1

(TsBcb,i︸ ︷︷ ︸
Bb,i

x̃k +TsBcb,ixss +TsBc,i︸ ︷︷ ︸
Bi

)d̃i,k .

which is in the form of a standard discrete-time bilinear system as

x̃k+1 = Ax̃k +
m
∑
i=1

(Bb,i x̃k +Bi )ũi,k . (7)
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Control of dc-dc boost converter
— Circuit diagram of the boost converter

RL L

iLvg vc
C+

R vo
+

_
_

S=0

S=1

Figure: Circuit diagram of boost converter.

— Model with switch on

A1 =
[
−RL

L 0
0 − 1

RC

]
, B1 =

[ 1
L
0

]
, v = vg,

— Model with switch off

A2 =
[
−RL

L − 1
L

1
C − 1

RC

]
, B2 =

[ 1
L
0

]
, v = vg.

— The load voltage vo = vC = x2 is considered as the output which should be
kept at the desired voltage xss2 = vref = 24V .
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Controller design for dc-dc boost converter

We want to stabilize the discrete-time bilinear average model of the boost
converter, in the region determined by x̃TPx̃< γ. The matrix P is selected as:

P =
[
0.4 0.6
0.6 1.75

]
,

and γ = 4. The control effort constraint is set to ũmax = 0.4 .

Solving the SOS problem, the following controller is obtained:

ũ(x̃) =
−9.1x̃1−7.21x̃2−0.14x̃21 −0.003x̃1x̃2 +0.16x̃22

38.29−0.46x̃1 +0.23x̃2 +14.71x̃21 −2.13x̃1x̃2 +11.56x̃22
.
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Simulation results
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Change of operating point

— For linear systems, the dynamics (in terms of deviation variables) do not
change when the operating point is changed.

— For nonlinear systems this is not the case. The dynamics (also in terms of
deviation variables) will change with change of operating point.

— Assuming that the new operating point is consistent with the steady state
equations, how can we guarantee stability of the controlled system around the
new operating point?

The dynamics at the new operating point can be expressed as

x̂k+1 = (A+ ∆A)x̂k + (Bx̂k +B+ ∆B)ûk . (8)

where ∆A and ∆B depend linearly on the change in operating point.
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Change of operating point

— The linear dependence of the dynamics on the change of operating point
allows analyzing stability in a way similar to what is done for the control of
LPV systems.

— It is also important that the SOS design criterion depends linearly on the
system dynamics.

— We cover the range of parameter variations by a polytope.
— If the controller stabilizes the system at all vertices of the polytope,

stabilization is also guaranteed for all possible parameter values (operating
points) in the interior of the polytope.

— This result follows from a simple interpolation argument - the SOS stability
condition at an internal point of the polytope can be found by interpolating
between the conditions at the vertices of the polytope.
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DC-DC boost converter revisited

— The same DC-DC boost
converter as before.

— Controller design for
xss2 = vref = 24V

— Want to investigate
stability of operating
points in the range
20V ≤ vref ≤ 30V .

— Steady state operating
points and
outer-bounding
polytope shown in
figure.
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Figure: The set of new operating points and the outer
approximated polytope which covers the points
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Introducing integral action
— Common requirement that DC-DC converters should maintain their output

voltage close to the reference also in the presence of persistent disturbances.
— The converter load may change, some parameters may drift.
— Integral action required to counteract such effects.
— Integral action introduced in the design my augmenting the model with an

integrating statex̃ox̃I
xII


k+1

=
[

A 0[
0 I

]
I

]
︸ ︷︷ ︸

AI

x̃ox̃I
xII


k

+ (
[
Bx̃
0

]
︸ ︷︷ ︸
Bx̃,I

+
[
B
0

]
︸︷︷︸
BI

)ũk . (9)

— Here A, Bx̃, B describe the dynamics of the original bilinear system, xI is the
state for which steady state accuracy (integral action) is desired, and xII is the
augmented state.

— The augmented system is still bilinear.
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DC-DC boost converter with integral action
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Figure: Simulation results of the boost converter for SOS controller with integral action: (a)
output voltage, (b) inductor current, (c) duty cycle of the switch, and (d) load resistor
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Conclusions

— Relatively user friendly software makes SOS controller design available to
users without detailed knowledge of the optimization solution procedure
• YALMIP
• SOSTOOLS

— SOS formulations provides a systematic way of accounting for the bilinear
problem structure - and to utilize it in the design.
• A significant amount of work on more general polynomial nonlinearities by other

researchers.
• Most work in continuous time. Discrete time impose other requirements on the

controller structure.
— Practical requirements on the controller design can be handled in ways that

closely resemble how this is done for linear systems.
— Although the controller design might be said to be quite mathematically

complex, the online controller calculations are quite trivial:
• Evaluate nu +1 polynomials
• Perform nu scalar divisions
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Outlook

— The number of decision variables in the optimization formulation quickly
becomes large, in particular for a large number of states and high orders of
the controller polynomials.

— Interesting on-going work (by other people) on imposing/utilizing problem
structure in order to handle larger problems.

— SOS formulations also allow for higher order Lyapunov functions
• The number of decision variables in the design increases quickly
• Not clear how this is systematically utilized in the design. Some systems require

higher-order LFs - but how do we measure the size of the stable region?
— Better methods (incl. improved solvers) for problems where design

parameters enter bilinearly would be very welcome.
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